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Abstract

Dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ether (PBDE) flame retardants, 

and polychlorinated biphenyls (PCBs) are believed to be endocrine-disrupting chemicals (EDCs) 

in humans and animals. The purpose of this study is to examine the relationship of in utero and 

childhood exposure to these purported EDCs and reproductive hormones in adolescent boys who 

participated in CHAMACOS, an ongoing birth cohort in California’s Salinas Valley. We measured 

o,p′- and p,p′-DDT, p,p′- DDE, PBDEs and PCBs in serum collected from mothers during 

pregnancy or at delivery and from their sons at 9 years. We measured concentrations of follicle-

stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone (T) from 234 of their 

sons at 12 years. In adjusted models, we found that a 10-fold increase in maternal prenatal serum 

concentrations of BDE-153 was associated with a 22.2% increase (95% CI: 1.0, 47.9) in FSH, a 

96.6% increase (95% CI: 35.7, 184.7) in LH, and a 92.4% increase (95% CI: 20.9, 206.2) increase 

in T. Similarly, BDE-100 concentrations were associated with increases in boys’ LH levels. A 10-

fold increase in total prenatal ΣPCBs was associated with a 64.5% increase (95% CI: 8.6, 149.0) in 

FSH, primarily driven by non-dioxin-like congeners. Boys’ hormone levels were only marginally 

associated with prenatal DDT or DDE in primary models, but when boys’ Tanner stage at age 12 
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was added to models, prenatal maternal DDT levels were associated with decreases in LH 

(adjusted percent change per 10-fold increase = −18.5%, 95% CI: −29.8, −5.4) and T (percent 

change = −18.2%, 95% CI: −30.2, −4.2) and DDE with LH (percent change = −18.3%, 95% CI: 

−32.9, −0.6). Exposures measured in the children’s serum at 9 years also showed associations 

between BDE-153 and ΣPCBs. However, there is evidence that these associations appear to be 

mediated by child BMI. This study suggests associations on male hormones of 12 year old boys 

related to exposure to certain EDC exposure prenatally. The implications on future reproductive 

function in puberty and adulthood should be determined.
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INTRODUCTION

Chemicals such as dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ethers 

(PBDEs), and polychlorinated biphenyls (PCBs), are hypothesized to be endocrine 

disruptors – chemicals that mimic, block, or interfere with the body’s natural hormones 

(Chiabotto et al. 2006; Diamanti-Kandarakis et al. 2009; Massart et al. 2006). DDT, an 

organochlorine pesticide, has not been used in the United States (US) since 1972 and in 

Mexico since 2000 (Blanco-Munoz et al. 2016); nonetheless, most US residents have 

measurable levels of the its metabolite, dichlorodiphenyldichloroethylene (DDE) (CDC 

2013). The commercial PBDE product penta-BDE (consisting of the congeners BDEs 47, 

99, 100, and 153) was added to foam-based furniture, textiles and other consumer products 

until 2005, but continues to leach out from older household items. PCBs were used in the 

United States in dielectric and coolant fluids until 1979. These three chemical groups have 

long half-lives, are lipophilic, and bioaccumulate in the environment and in living organisms 

(SCPOP 2016a; UNEP 2001). They readily cross the placenta and reach the developing fetus 

(Vizcaino et al. 2014). Under the Stockholm Convention, PCBs and penta-BDE have been 

eliminated, and DDT use has been restricted to disease vector control (SCPOP 2016b; 

UNEP 2001). Although these chemicals are hypothesized to affect hormones, there are few 

human studies. Recent evidence suggests that age of pubertal onset in boys, defined by 

testicular enlargement (gonadarche) and the appearance of pubic hair (pubarche), may also 

be decreasing, and exposure to endocrine disruptors has been implicated (Herman-Giddens 

et al. 2001; Herman-Giddens 2006).

DDT compounds, such as the isomers p,p′-DDT and o,p′-DDT that are found in technical 

grade DDT, are known to be at least mildly estrogenic, and p,p′ DDE inhibits androgens 

from binding to their receptors (Kelce et al. 1995). A study of 120 Akwesasne Mohawk boys 

(aged 10–17 years) reported that concurrent measurements of p,p′-DDT were not associated 

with testosterone (T) levels, although p,p′-DDE levels were positively but not significantly 

associated (Schell et al. 2014). The one previous study that examined the association of in 
utero exposure to DDT/DDE on the hormones of adolescent boys found no association 
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between maternal prenatal levels during a time of peak use in the US and their sons’ T levels 

at ages 10 to 17 years (n=260) (Gladen et al. 2004).

In estrogen receptor binding assays, lower brominated PBDEs (e.g. BDE-28, −47 and −100) 

exhibit estrogenic activity (Dang et al. 2007; Meerts et al. 2001), while higher brominated 

congeners (e.g. BDE-153 and −190) display anti-estrogenic properties (Meerts et al. 2001). 

The penta-BDE mixture also exhibits anti-androgenic activity in androgen receptor binding 

assays (Harju et al. 2007; Stoker et al. 2005). PBDEs have been found to be anti-androgenic 

in vivo in male rodent models, with studies of in utero BDE-99 exposure resulting in 

significant decreases in T in male offspring and a slight acceleration in onset of puberty 

(preputial separation) in low-dose males (Lilienthal et al. 2006). However, peripubertal 

penta-BDE exposure caused delayed preputial separation in male rodents (Stoker et al. 

2004). No previous studies have examined the relationship in humans of in utero PBDE 

exposure on sex hormone levels, but significant inverse associations have been reported 

between penta-BDEs in house dust and FSH, LH, and free androgen index (molar ratio of 

total T to sex hormone-binding globulin) in a study of 24 men recruited from an infertility 

clinic (Meeker et al. 2009), but only the association with FSH persisted in the expanded 

sample of 62 men (Johnson et al. 2013).

PCB exposure studies have demonstrated conflicting relationships with male hormones in 

both animal (Wakui et al. 2010; Xiao et al. 2011; Xu et al. 2013; Zhu et al. 2013) and human 

studies. For example, in a cohort of boys with higher prenatal exposure to PCBs during the 

Yucheng incident in 1978–79 (n=47) and unexposed controls (n=49), exposed boys who 

were at puberty (≥13 years old) had lower T levels and higher estradiol and FSH levels (non-

significant) compared to controls, but there was no difference in boys < 13 years; there were 

also no differences in LH levels (Hsu et al. 2005). Conversely, in a much larger study of the 

Faroe Islands birth cohort, PCBs in cord blood were inversely related to serum 

concentrations of T and LH in 14-year old boys (n=433) (Grandjean et al. 2012).

In the present study, we determine the relationship between prenatal and childhood serum 

concentrations of DDT/DDE, penta-BDEs, and PCBs on the sex hormones of 12-year old 

boys participating in the Center for the Health Assessment of Mothers and Children of 

Salinas (CHAMACOS) birth cohort study. We hypothesize that early life exposure to EDCs 

will alter sex hormones of adolescent boys, although the direction of change is not apparent 

from prior literature.

METHODS

Study participants

Pregnant women were recruited between October 1999 and October 2000 from community 

clinics. Women were eligible for participation if they were ≥ 18 years old, < 20 weeks 

gestation, Spanish- or English-speaking, qualified for low-income health insurance, and 

planned to deliver at the public hospital. A total of 601 women, known as the CHAMACOS 

1 or CHAM1 cohort, enrolled in the study, of whom 526 were followed to the delivery of a 

live-born, surviving singleton, of whom 263 were boys. The children were also assessed at 

multiple study visits, approximately every 1 to 2 years, with 163 boys followed until age 12. 
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Detailed methods for CHAM1 are published elsewhere (Eskenazi et al. 2004; Eskenazi et al. 

2006). When the CHAM1 children were 9 years old (2009–2011), a second cohort of 305 9-

year old children, CHAMACOS 2 (CHAM2), were recruited, 161 of whom were boys, with 

149 followed to age 12. Eligibility criteria were similar to those for CHAM1. Mothers gave 

written informed consent; children gave verbal assent starting at age 7 and written assent at 

age 12. All study activities were approved by the University of California at Berkeley 

Committee for the Protection of Human Subjects and the Centers for Disease Control (CDC) 

internal review board (IRB).

Data collection

CHAM1 women were interviewed twice during pregnancy (at around 13 and 26 weeks 

gestation), soon after delivery, and at each of the children’s follow-up visits. Bilingual and 

bicultural interviewers conducted interviews in Spanish or English. During each interview, 

information was collected about family sociodemographic characteristics, maternal 

characteristics, and pregnancy and medical histories, as well as child developmental 

milestones, diet, and behavior. For CHAM2 mothers, data on pregnancy and the children’s 

first 9 years were collected retrospectively at the child’s 9-year visit. Children were 

interviewed privately at the 12-year old visit about their smoking and alcohol use, as well as 

other behaviors and habits. Children’s height and weight were also measured at each of 

these visits, and body mass index (BMI, kg/m2) was calculated.

Assessments of genital and pubic hair development were performed using the Tanner scale 

with stages from 1 (pre-puberty) to 5 (completed puberty) (Marshall and Tanner 1970); 

highly trained research staff collected Tanner measurements at 9, 9.75, 10.5, 11.25, 12, and 

12.75 years. Quality control of Tanner staging was overseen by a pediatric endocrinologist.

Measurement of DDT/DDE, PBDEs, and PCBs

For CHAM1 mothers, we measured the concentrations of DDT/DDE (n=83), PBDEs 

(n=82), and PCBs (n=86) in blood serum samples collected via venipuncture during 

pregnancy (mean ± standard deviation = 27.4 ± 3.0 weeks gestation) or at delivery. For 

CHAM1 and CHAM2 participants, DDT/DDE, PBDEs, and PCBs were measured in blood 

serum samples from the women and their children when the children were 9 years old.

Serum samples were immediately processed and stored at −80°C at the University of 

California, Berkeley, School of Public Health Biorepository until being shipped on dry ice 

for analysis at the CDC (Atlanta, GA). p,p’-DDT, p,p’-DDE and o,p’-DDT, 10 PBDE 

congeners (BDEs 17, 28, 47, 66, 85, 99, 100, 153, 154, and 183), and 34 PCB congeners 

(International Union for Pure and Applied Chemistry numbers 18, 28, 44, 49, 52, 66, 74, 87, 

99, 101, 105, 110, 118, 128, 138, 146, 149, 151, 153, 156, 157,167, 170, 172, 177, 178, 180, 

183, 187, 189, 194, 195, 196,199, 206, and 209) were detected using gas chromatography 

isotope dilution high resolution mass spectrometry (GC-ID-HRMS). The limits of detection 

(LODs) for maternal samples were 0.8–6.7 ng/g lipid for DDT and DDE, 0.2–2.6 ng/g lipid 

for BDE-47, 0.2–0.7 ng/g for other PBDE congeners, and 0.008–2.14 ng/g lipid for PCBs. 

The LODs for child samples were 1.2–9.9 for DDT and DDE, 0.7–5.8 for BDE 47, 0.3–2.9 

for other PBDE congeners, and 0.2–6.2 ng/g lipids for PCBs. For maternal samples taken at 
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9 years, the LODs were 0.6–9.75 for DDT and DDE, 0.7–5.8 for BDE-47, and 0.2–2.9 for 

the other PBDE congeners. Each run of 24 unknowns included quality control samples (n=3) 

and method blank samples (n=3). The analytical procedure has been published previously 

(Sjodin et al. 2008).

Concentrations are expressed on a serum lipid basis (nanograms/gram lipids); total serum 

lipid concentrations were determined based on the measurement of triglycerides and total 

cholesterol using standard enzymatic procedures (Roche Chemicals, Indianapolis, IN), and 

the total lipid concentration was calculated based on an equation including the total 

cholesterol and triglyceride concentration (Phillips et al. 1989).

For 24 CHAM1 mothers in our final sample who lacked a prenatal blood sample but had 

blood collected at delivery, we estimated prenatal concentrations using predicted values from 

a univariate regression of delivery on prenatal concentrations. The correlations between 

prenatal and delivery exposure concentrations were all ≥ 0.95, so other predictors were not 

considered necessary (all regression r2 values were ≥ 0.9) (Castorina et al. 2011). For both 

PBDEs and PCBs, the machine-read values were assigned for values less than the LOD if a 

signal was detected; and if no signal was detected, levels were imputed at random based on a 

log-normal probability distribution below the LOD via maximum likelihood estimation 

(Lubin et al. 2004).

For all CHAM2 children plus the 27 CHAM1 children whose mothers were missing prenatal 

or delivery measurements (n = 149), we predicted prenatal p,p’-DDT or p,p’-DDE 

concentrations using the levels in maternal and child blood taken at the 9-year visit in 

combination with other covariates (mothers’ age, education, marital status, parity, and 

poverty status, duration of breastfeeding, and maternal weight and BMI both before 

pregnancy and when her child was 9 years old) (Verner et al. 2015). Models predicting the 

four primary prenatal penta-PBDE congeners (n = 142) were generated based on serum 

concentrations at the 9-year visit for mothers only, since inclusion of child’s levels yielded a 

weaker predictive model (Verner et al. 2015). Prediction methods were developed using a 

Super Learner algorithm (Van der Laan et al. 2007), which yielded the following r2 values in 

the larger sample that these predictions were based on: p,p’-DDT=0.95, p,p’-DDE=0.96, 

BDE-47=0.79, BDE-99=0.67, BDE-100=0.80, and BDE-153=0.85 (Verner et al. 2015). We 

did not develop a prediction model for PCBs because of the number of different congeners 

that would need to be considered and the low detection frequency of most.

Measurements of hormones

Concentrations of LH, FSH, and T were measured in serum samples collected before 9 AM. 

Of the 312 boys who completed the 12-year visit, 234 (112 boys from CHAM1 and 122 

boys from CHAM2) provided a blood sample of sufficient volume for hormone analyses. 

(One child was missing an FSH value due to an insufficient quantity of sample.) A total of 

211 of these 234 boys had measurements of DDT/DDE, PBDEs, and PCBs from blood 

collected at their 9-year visit.

LH (lower limit of quantification (LLOQ) = 0.017 mIU/ml) and FSH (LLOQ = 0.005 

mIU/ml) were determined by electrochemiluminescent assay. Blanks, repeats, and internal 
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standards were included for quality assurance. The intra- and inter-assay coefficients of 

variation (CVs) for both assays were less than 6% and 7%, respectively. T levels were 

analyzed using liquid chromatography with mass spectrometry detection after nonpolar 

solvent extraction; the LLOQ was 2.5 ng/dL. Samples were processed with inclusion of 

water blanks, 5 assay control pools, and a 200 pg standard to assess accuracy and precision 

of the assay. The intra-assay CV was <6% and the inter-assay CV was < 10%. All assays 

were performed by Esoterix Laboratory Services (Calabasas Hills, CA).

Statistical analysis

Hormone and exposure variables all showed right-skewed distributions and were log10-

transformed to more closely approximate a normal distribution. Thus, models are interpreted 

as the percent change in hormone levels per 10-fold increase in the concentration of the 

analyte(s). Because of the low detection for o,p’-DDT (26.7%), we restricted our analysis of 

DDT/DDE to p,p’-DDT and p,p’-DDE. We selected for statistical analysis the penta-PBDE 

congeners (BDE-47, −99, −100, and −153) since their detection frequencies were greater 

than 75%. Penta-BDE congeners were analyzed individually and as a variable summing the 

four congeners. Only individual PCB congeners with a detection frequency greater than 75% 

(PCBs 18, 28, 44, 49, 52, 66, 74, 99, 101, 118, 138, 146, 153, 156, 170, 180, 187, 194, 196, 

and 199 for maternal samples; and PCBs 28, 118, 138, 153, and 180 for child 9-year 

samples) were considered in statistical analyses. Because PCBs may have different modes of 

hormonal action, in maternal models we classified congeners based on dioxin-like (PCBs 

118, 156, 170, 180) and non-dioxin-like (PCBs 18, 28, 44, 49, 52, 66, 74, 99, 101, 138, 146, 

153, 187, 194, 196, and 199) activity (Van den Berg et al. 2006). In child serum samples, 

only five PCB congeners exhibited sufficient detection, and those were dominated by a 

single congener (PCB28); as a result, we did not divide child PCB concentrations into 

dioxin-like and non-dioxin-like categories.

Models with maternal DDT/DDE and PBDEs were run in two different ways: using 

measured concentrations only and using both measured and extrapolated maternal prenatal 

concentrations. We also constructed models using the measured levels of p,p’-DDT, p,p’-

DDE, and PBDEs (BDE-47, 99, 100, 153, and their sum) in child serum collected when the 

children were 9 years of age.

Covariates that were considered for inclusion included mothers’ age at menarche and pre-

pregnancy BMI; maternal age, race, years in the United States, and education at time of 

delivery; children’s birthweight, gestational age at birth, birth order, and duration of 

exclusive breastfeeding; children’s exact age, BMI, smoking, and alcohol use status at age 

12 years; and family poverty status at each visit (see Table 1). Covariates were chosen based 

on a directed acyclic graph (see Supplemental Figures 1 and 2) and included maternal 

education and family poverty at age 9, as well as child age at hormone assessment and 

cohort (CHAM1 or 2) (if applicable). Models with maternal exposures also included 

maternal pre-pregnancy BMI. Child’s age was treated as a continuous variable; family 

poverty, maternal education and pre-pregnancy BMI, and cohort were parameterized as 

categorical variables (see Table 1). Twenty-three mothers in the CHAM2 cohort were 

missing pre-pregnancy BMI values, so we averaged the maternal BMI values at 9, 10.5, and 
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12-year visits and formed categories using those values (<25, 25–30, and >30 kg/m2). We 

included Tanner genital development stage in sensitivity analysis in order to determine 

whether in utero chemical exposure was related to hormone levels within a given pubertal 

stage. Thirteen boys were missing Tanner data at 12 years. In sensitivity analyses, we 

included both maternal and child measurements in the same model in order to assess their 

joint effects, although in some cases their correlation was high.

To test for a non-linear relationship between exposures and outcomes, we also ran a 

generalized additive model with a 3-df cubic spline for the exposure. If the model suggested 

evidence of non-linearity, we examined GAM residual plots and models with blood 

concentrations categorized by tertiles to assess the shape of the relationship. Models were 

also run including all 3 classes of chemicals (p,p’-DDT or p,p’-DDE, ΣPBDEs, ΣPCBs) in 

order to determine which class of compounds may have been driving observed associations. 

Possible interactions between the different classes of chemicals were examined using cross-

product terms, with p-values below 0.1 considered statistically significant interactions.

In addition, in models of child and of maternal exposure, we examined mediation by the 

child BMI with a counterfactual approach, using indirect effects as evidence of mediation 

(Valeri and Vanderweele 2013).

All models used robust standard errors based on the Huber-White sandwich estimator to 

account for deviation from linear regression model assumptions (Huber 1967; White 1980). 

All analyses were completed with Stata version 13.1 (Stata Corporation, College Station, 

Texas).

RESULTS

Most of the mothers were Latina (97.4%) and born in Mexico (88.0%), with approximately 

half being in the United States for less than five years at the time of the index birth (Table 1). 

About three-quarters of the women had less than a high school education, with 40.3% 

having only a grade school education. The preterm birth rate in this sample was 8.5%. 

Almost all the boys had been breastfed (92.1%) with 31% exclusively breastfed for more 

than four months. At the time of the 12-year follow-up, 20.8% of the boys were overweight 

and 38.1% were obese, and almost all boys (88.7%) had reached Tanner genital stage 2. Few 

of the boys had tried smoking (3.4%) or alcohol (16.7%) at the time of their 12-year visit. 

Compared to boys who dropped out before age 12, those with hormone data at 12 years had 

older mothers, were breastfed longer, were less likely to be born by Cesarean section, and 

had marginally higher total maternal prenatal PCBs. No other baseline characteristics 

differed between those who were followed up and those who dropped out.

Table 2 shows the distribution of maternal serum concentrations for DDT/DDE, PBDEs, and 

PCBs. Median concentrations of p,p’-DDT and p,p’-DDE were 12.6 ng/g lipid (Interquartile 

Range (IQR) = 7.1, 50.3) and 496.9 ng/g lipid (IQR = 260.4, 1621.6), respectively, including 

measured and extrapolated values. Median concentrations of measured samples only were 

very similar: 12.7 ng/g lipid (IQR = 6.8, 57.2) for p,p’-DDT and 567.6 ng/g lipid (IQR= 

214.3, 1622.2) for p,p’-DDE, with 100% detection. The median of the sum of the four 
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PBDE congeners (BDE-47, −99, −100, −153) was 24.3 ng/g lipid (IQR = 15.4, 37.6), 

including both measured and extrapolated prenatal maternal levels; the preponderance of the 

sum was contributed by BDE-47. The PBDE concentrations were similar when we restricted 

the sample to those with measured levels (see Table 2), with nearly 100% detectable for each 

congener. The median of the sum of PCBs was 65.8 ng/g lipid (IQR= 43.3, 100.3) with 

100% detection for at least one congener. Measured maternal serum concentrations of p,p’-

DDT and p,p’-DDE were highly correlated (r=0.89, p<0.001), whereas these both showed a 

weak negative correlation with PBDE (r= −0.16, p=0.14 and −0.05, p=0.66, respectively) 

and PCB (r=−0.14, p=0.25 and r= −0.03, p=0.82, respectively); maternal concentrations of 

PBDE and PCB had a weak positive correlation (r= 0.12, p=0.34).

Table 2 also shows the distribution of concentrations for DDT/DDE, PBDEs, and PCBs 

measured in the boys’ sera at 9 years of age. The median level of p,p’-DDT in children was 

low (median = 1.4 ng/g lipid; IQR = 1.0, 2.6) compared to mothers’ (median = 12.7 ng/g 

lipid, IQR = 6.8, 57.2), and only 16.6% of samples contained detectable levels. The median 

level of child p,p’-DDE (median = 137.3 ng/g lipid; IQR = 79.5, 295.9) was less than a 

quarter of measured maternal levels (median = 567.6 ng/g lipid; IQR = 214.3, 1622.2), but 

with 100% detection. The median of the child’s PCB (median = 20.8 ng/g lipid; IQR = 13.5, 

31.1) was less than a third of the mothers’ levels (median = 65.8 ng/g lipid; IQR = 43.3, 

100.3). In contrast, the median of the PBDE congeners was more than twice as high in child 

than in maternal serum (median=62.8 ng/g lipid; IQR= 41.4, 112.5). Correlations between 

measured maternal prenatal and child 9-year p,p’-DDT, p,p’-DDE, PBDE, and PCB levels 

were 0.81 (p<0.001), 0.76 (p<0.001), 0.18 (p<0.13), and 0.18 (p<0.14), respectively.

Table 3 shows the serum levels of FSH, LH, and testosterone in the CHAMACOS boys at 12 

years old. The median concentration of each hormone was as follows: FSH was 2.5 mIU/mL 

serum (IQR = 1.8, 3.4), LH was 2.3 mIU (IQR = 1.3, 3.7), and T was 74.5 ng/dL (IQR = 18, 

272).

Table 4 presents the adjusted models for DDT/DDE, PBDEs, and PCBs in maternal prenatal 

serum and hormone levels in the 12-year old boys. Maternal serum p,p’-DDT (measured 

only, or measured and extrapolated) were somewhat associated with decreases in the boys’ 

LH and T which became statistically significant when we adjusted for Tanner stage (see 

Table 4, Supplemental Table 1). Specifically, after controlling for Tanner stage, a 10-fold 

increase in maternal p,p’-DDT concentrations was associated with an 18.5% decrease in LH 

(95% confidence interval (CI) = −29.8, −5.4) and an 18.2% decrease in T (95% C = −30.2, 

−4.2) (See Supplemental Table 1). Similarly, a 10-fold increase in p,p’-DDE was related to 

an 18.3% decrease in LH (95% CI = −32.9, −0.6), when we controlled for Tanner stage.

In contrast, prenatal maternal serum concentrations of PBDE (measured and extrapolated) 

were associated with an increase in the boys’ LH levels (adjusted percent change per 10-fold 

increase = 51.0%; 95% CI = 3.0, 121.3) but with no relationship with FSH or T (Table 4). 

For individual congeners, maternal concentrations of BDE-100 were associated with an 

increase in LH levels (adjusted percent change per 10-fold increase = 75.1%; 95% CI = 21.8, 

151.6), while maternal BDE-153 concentrations were associated with increases in FSH 

(adjusted percent change per 10-fold increase = 22.2%; 95% CI = 1.0, 47.9), LH (adjusted 
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percent change per 10-fold increase = 96.6%; 95% CI = 35.7, 184.7) and T (adjusted percent 

change per 10-fold increase = 92.4%; 95% CI = 20.9, 206.2). When analysis was restricted 

to measured maternal levels only, results were similar except that maternal concentrations of 

BDE-100 were now also associated with an increase in boys’ T levels (adjusted percent 

change per 10-fold increase = 118.7%; 95% CI = 10.6, 332.2), and maternal BDE-153 

concentrations were no longer associated with the boys’ FSH levels. Supplemental Table 1 

shows that even after controlling for the boys’ Tanner stage, significant positive associations 

were found between BDE-100 (measured and extrapolated) and LH (adjusted percent 

change per 10-fold increase = 58.9; 95% CI = 5.0, 140.4) and between BDE-153 and LH 

(adjusted percent change per 10-fold increase = 79.0; 95% CI = 19.2, 168.8) and T (adjusted 

percent change per 10-fold increase = 56.0; 95% CI = 16.9, 108.2).

Similarly, maternal prenatal ΣPCBs levels had positive relationships with hormone levels of 

the 12-year olds (Table 4) but only significantly associated with FSH levels. Specifically, 

maternal prenatal ΣPCB concentrations were related to a 64.5% increase in boys’ FSH levels 

(95% CI = 8.6, 149.0). This relationship is driven by the non-dioxin-like PCBs (adjusted 

percent change per 10-fold increase = 63.3%; 95% CI = 9.3, 143.9. The results controlling 

for Tanner stage were similar.

Although numbers were appreciably smaller (n=69 or 70), when we included the measured 

concentrations of ΣPBDE, ΣPCB and p,p’-DDT or p,p’-DDE in the same model, only ΣPCB 

remained associated with elevated FSH (see Supplemental Table 2). We found no statistical 

interaction between different exposures when added to the above models.

There was no evidence of non-linearity in the relationships presented above and no evidence 

of mediation of child BMI on the association of maternal chemical concentrations and child 

hormone levels (data not shown).

As shown in Table 5, child BDE-153 levels at age 9 were associated with an increase in LH 

(adjusted percent change per 10-fold increase = 59.0% 95% CI = 8.6, 132.6) and T (adjusted 

percent change per 10-fold increase = 149.1%; 95% CI = 42.7, 334.6) and child ΣPCB 

concentrations with an increase in T at age 12 years (adjusted percent change per 10-fold 

increase = 108.9% ; 95% CI = 7.1, 307.2). However, these associations appear to be 

primarily mediated by the child’s BMI with no evidence of a direct effect of chemical 

concentrations on hormones. Specifically, child BMI mediated 42.0% of the association of 

child BDE-153 levels and LH, 30.3%, of BDE-153 and T, and 47.7% of ΣPCB and T. No 

other associations were found between the child’s chemical concentrations and hormone 

levels. Adding Tanner stage to these models did not appreciably change the results (see 

Supplemental table 3). We found no statistical interaction between different exposures when 

added to the above models, and no evidence of non-linearity in the relationships presented 

above.

When both maternal and child chemical concentrations were included in the same model, 

the results are similar to those found in the above separate models.
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DISCUSSION

We examined the relationship of maternal prenatal DDT, DDE, PBDEs, and PCBs serum 

concentrations with the sex hormone levels of their sons at 12 years of age. We found that 

mothers’ levels of DDT/DDE were somewhat inversely related to their sons’ sex hormones 

in our primary models and p,p′-DDE became significantly inversely associated with LH, 

and p,p′-DDT with LH and T, when Tanner stage was considered in the model. We also 

found that ΣPBDE concentrations, specifically of BDE-100 and −153, were associated with 

increased hormone levels (BDE-100 with LH and BDE-153 with FSH, LH and T). Maternal 

ΣPCB concentrations, specifically the non-dioxin-like PCBs, were associated with increased 

FSH. Any associations found between the chemical concentrations in the children’s blood at 

9 years and their hormone levels at 12 years appeared to be mediated by the child’s BMI.

Although cross-sectional studies of primarily European or US adults (Cocco et al. 2004; 

Ferguson et al. 2012; Goncharov et al. 2009; Hagmar et al. 2001) have reported no 

association between DDT or DDE and sex hormones, serum p,p’-DDE has been associated 

with lowered T in more highly-exposed populations such as Mexican flower growers 

(Blanco-Munoz et al. 2012), residents of a rural Brazilian village where a chemical plant had 

been located (Freire et al. 2014), and a small sample of highly-exposed 16–28 year old 

Mexican men (Ayotte et al. 2001). In addition, Martin et al. found a decrease in T levels and 

free androgen index in African-American farmers, but only in those in the highest 10th 

percentile of p,p’-DDE levels (2002). In contrast to the above findings, a relatively small 

study of South-African malaria vector-control workers (n=47) who were highly exposed 

(Dalvie et al. 2004) reported significant positive relationships between p,p’-DDT and both 

estradiol and T, but not with FSH or LH; they reported no significant relationships with p,p’-

DDE. The only previous study examining the relationship of maternal prenatal exposure to 

DDT/DDE and adolescent hormones reported null findings (Gladen et al. 2004). Similar to 

some of the cross-sectional studies of men (Ayotte et al. 2001; Blanco-Munoz et al. 2012; 

Freire et al. 2014; Martin et al. 2002), we find some evidence of an inverse association of 

DDT/DDE and male hormones in the adolescents that are only statistically significant when 

we controlled for Tanner stage (see Supplemental Table 1), suggesting that within a given 

stage of puberty there may an inverse relationship with hormone levels. Diminished 

secretion of T can result in failure of gonadal function (hypogonadism), such that males fail 

to produce normal numbers of sperm (Dandona and Rosenberg 2010). Thus, if the observed 

relationship continues into adulthood, a reduction in fertility may be noted.

We report, in this first study of in utero PBDE exposure and male adolescent hormones, that 

maternal blood concentrations of the longer half-life congeners BDE-100 and −153 were 

associated with increases in some of the male hormones. Increased male hormones could 

result in earlier onset of puberty in these boys (possibly mediated via alteration of the 

hypothalamic– pituitary–gonadal axis). LH (which acts on Leydig cells in the testes to 

produce T) and FSH (which acts on Sertoli cells in the testes to initiate spermatogenesis) 

work synergistically and are generally elevated in male precocious puberty (Blondell et al. 

1999; Dandona and Rosenberg 2010). However, there are few previous studies in humans to 

support our findings and results in animals are conflicting. For example, in animal studies, 

prenatal administration of BDE-99 at environmentally-relevant doses resulted in adult male 
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rodent offspring with smaller testes and epidydimus and lower sperm production but no 

effect on LH or T (Kuriyama et al. 2005), whereas another study found decreased estrogen 

and T and nonsignificantly earlier onset of puberty (Lilienthal et al. 2006), and yet another 

study found that PBDE-710 (a mixture of tetra-and penta-BDE) stimulated T secretion in rat 

Leydig cells (Wang et al. 2011). A previous cross-sectional study of men found inverse or no 

association with the same male hormones examined in the present study (Johnson et al. 

2013; Meeker et al. 2009).

PCBs are mixtures of congeners with varying modes of action (Wolff et al. 1997); some act 

like dioxins on the aryl hydrocarbon receptor, and others are non-dioxin-like compounds, 

acting primarily as neurotoxicants by affecting the hypothalamic–pituitary–gonadal axis 

(Dandona and Rosenberg 2010). Our finding that maternal prenatal serum concentrations of 

PCBs were positively associated with FSH in adolescents, particularly of non-dioxin-like 

congeners, shows mixed consistency with results of previous studies, possibly due to varying 

mixes of PCB congeners. PCB cord levels showed an inverse association with and T and LH 

in 14-year old boys from the Faroe Islands birth cohort study (Grandjean et al. 2012). Their 

exposure was predominantly from consumption of whale blubber and to non-dioxin-like 

PCBs, for which we found positive associations with sex hormones. The nonsignificant 

findings in the Yucheng cohort, in which adolescents were exposed primarily to dioxin-like 

PCBs and dibenzofurans following a rice oil contamination, are more in line with the lack of 

association we found between dioxin-like PCBs and adolescent male reproductive hormones 

(Hsu et al. 2005). The overall levels of exposure in both the Faroe Islands and Yucheng 

studies are likely considerably higher than in our population, which had lower levels than the 

general US population participating in NHANES (CDC 2005). The similarity in our findings 

from in utero exposure to PBDEs and to PCBs is noteworthy, given their resemblance in 

structure (Siddiqi et al. 2003).

While we found associations between male hormones in the 12-year olds and childhood (at 

9-years) concentrations of BDE-153 (LH and T) and total PCBs (T only), these associations 

appear to be mediated by child BMI. We previously reported a positive relationship with 

body mass in these CHAMACOS boys at 7-years of age of maternal prenatal BDE-153 

concentrations, but an inverse relationship of child BDE-153 concentrations (Erkin-Cakmak 

et al. 2015). Taken together, our results suggest a complex interrelationship between 

childhood PBDE levels, especially for the more lipophilic compounds, and body mass, 

pubertal onset, and male sex hormones (Chevrier 2013).

The strengths of the present study are its unique longitudinal design, the use of prenatal as 

well as child blood chemical concentrations with a wide range of exposure, and extensive 

covariate information for both mothers and children. In addition, the population is relatively 

homogenous with regard to both race and social class, which potentially reduces the 

influence of unmeasured confounding. Furthermore, all boys were 12-years old, and we have 

considered Tanner staging in the analysis. However, the study is limited in that we use back-

extrapolated exposure measures to estimate in utero exposure to DDT/DDE and PBDEs for 

some of the cohort, although results were similar in most cases when restricting the analysis 

to the group with measured levels. In utero concentrations of PBDEs and PCBs were similar 

or lower that the general US population’s; because the maternal DDT/DDE levels were 
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relatively high due to most mothers’ recent immigration from Mexico, results on DDT/DDE 

may not be generalizable to the general US population. In addition, we did not measure 

some hydroxy-BDEs that may be more biologically active (Siddiqi et al. 2003), nor the 

highly-brominated compounds of PBDEs such as BDE-209, although they likely represent a 

small portion of the total PBDE body burden (Rose et al. 2010).

In conclusion, in this prospective follow-up study, we found that maternal prenatal blood 

concentrations of PCBs, PBDEs and DDT/DDE were associated with some alterations in 

serum hormone concentrations in adolescent boys, particularly for the higher congener 

PBDEs and the non-dioxin-like PCBs. Any associations of childhood blood concentrations 

of these endocrine disrupting chemicals and sex hormones are likely mediated by 

associations of exposure with child BMI. Thus, these results suggest endocrine disruption 

due to exposures that occurred prenatally. Although the implications on future testicular and 

reproductive function in puberty and in adulthood are not known at this time, we are 

currently evaluating the relationship with in utero exposure to these endocrine disruptors and 

timing and tempo of puberty. Given the paucity of studies examining in utero exposures and 

male reproductive hormones and the inconsistencies in findings across the few existing 

studies, more research is needed to confirm our results and to determine whether the 

purported effects of these endocrine disruptors persist into adulthood, when hormone levels 

may be more stable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We acknowledge the CHAMACOS phlebotomists, Norma Morga, Kimberley Parra and Celina Trujillo as well as 
other field staff, students, community partners, and participants and families; the biorepository staff for their 
assistance in specimen management; and colleagues at CDC for specimen analysis. I would like to thank Drs. 
Fraser Gaspar and Marc-Andre Verner for their contribution to the back-extrapolation models of CHAMACOS in 
utero concentrations.

Grant information: This publication was made possible by research supported by grant numbers: RD 83171001 
and RD 826709 from the U.S. Environmental Protection Agency (US EPA), and PO1 ES009605 and RO1 
ES015572 from NIEHS. The contents of this publication are solely the authors’ responsibility and do not 
necessarily represent the official views of the NIEHS, NIH, EPA or the Centers for Disease Control and Prevention.

Abbreviations

BMI body mass index

CHAM1 CHAMACOS 1 (birth cohort)

CHAM2 CHAMACOS 2 (enrolled at age 9 and followed prospectively)

CV coefficients of variation

DDT dichlorodiphenyltrichloroethane

DDE dichlorodiphenyldichloroethylene
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FSH follicle-stimulating hormone

kg/m2 Kilogram per meter squared

LH luteinizing hormone

LLOQ lower limit of quantification

LOD limits of detection

mIU/ml milli international units per milliliter

ng/dL nanograms per deciliter

PBDE polybrominated diphenyl ethers

PCB polychlorinated biphenyls

pg picograms

T total testosterone

TB Technical Bulletin

US United States

≥ greater than or equal to

< less than
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Table 1

Demographics and medical characteristics of boys followed to age 12 years, CHAMACOS. 1999–2014

N (%)

Maternal Characteristics

  Age at delivery, years

    18–24 96 (41.0)

    25–29 73 (31.2)

    30–34 40 (17.1)

    35–45 25 (10.7)

  Education

    ≤ 6th grade 94 (40.3)

    7–12th grade 82 (35.2)

    ≥ High school 57 (24.5)

  Race

    Latino 227 (97.4)

    Other 6 (2.6)

  Country of birth

    U.S. 23 (9.8)

    Other 211 (90.2)

  Years in the U.S.

    ≤ 1 55 (23.5)

    2–5 53 (22.7)

    6–10 61 (26.1)

    11+ 45 (19.2)

    Entire life 20 (8.6)

  At or below the Census poverty
line at 9 years postpartum

    No 63 (26.9)

    Yes 171 (73.1)

  Parity

    0 77 (32.9)

    1 68 (29.1)

    2+ 89 (38.0)

  Pre-pregnancy BMI, (kg/m²)

    <18.5 3 (1.3)

    18.5–24.9 85 (36.3)

    25–29.9 83 (35.7)

    ≥30 63 (26.9)

  Age at menarche, years

    < 12 42 (18.0)

    12–13 112 (47.9)

    > 13 80 (34.2)

  Alcohol consumption during pregnancy
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N (%)

    No 202 (86.7)

    Yes 31 (13.3)

  Smoked during pregnancy

    No 230 (98.3)

    Yes 4 (1.7)

Child Characteristics At Birth

  Year of birth

    2000 73 (31.2)

    2001 102 (43.6)

    2002 59 (25.2)

  Low birthweight (< 2500g)

    No 219 (94)

    Yes 14 (6.0)

  Preterm birth (< 37 weeks)

    No 214 (91.5)

    Yes 20 (8.5)

  Delivered by Cesarean Section

    No 188 (80.3)

    Yes 46 (19.7)

  Exclusively breastfed, months

    None 18 (7.9)

    < 2 106 (46.3)

    2–4 34 (14.6)

    > 4 71 (31.0)

At Age 12

  Weight status

    < 85th percentile 95 (41.1)

    85–95th percentile 48 (20.8)

    > 95th percentile 90 (38.6)

  Tanner genital stage 2+

    No 25 (11.3)

    Yes 196 (88.7)

  Tanner pubic hair stage 2+

    No 111 (50)

    Yes 111 (50)

  Ever smoked

    No 226 (96.6)

    Yes 8 (3.4)

  Ever tried alcohol

    No 195 (83.3)

    Yes 39 (16.7)
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